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Abstract

The ultimate objective of the planned work is to propose a way to the characterization of the bone texture from the

analysis of CT-scan images. This would assist the discrimination of healthy from pathological subjects. This paper

emphasizes a preliminary study concerning the selection of tools for the characterization of the bone texture. The

selectivity is lead by the analysis of respective sensitivities of the considered methods. We study here two methods of

texture analysis. The first one is based on the fractal geometry whose application to the analysis of texture is well

established in literature. The second method is an original one. It is called the ‘‘method of the three dimensional re-

lief’’.

� 2003 Elsevier Science B.V. All rights reserved.
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1. Introduction

Osteoporosis is a bone pathology inducing

an increased fragility of the skeleton. It appears

more frequently to women for hormonal reasons

(menopause). It is also linked to the advancing

age: indeed, at the age of 70, the density of the
skeleton has decreased by 1/3. With the lengthen-

ing of the duration of life, this pathology is going

to concern an increasing population. It often en-

tails fractures of the wrist and the femur neck

(55 000 fractures per year in France, which cause

death in 25% of the cases).

The early diagnosis of osteoporosis leads to

a better medical treatment. Among the means

currently available in routine clinic, the medical

imaging brings privileged means of detection. A
good knowledge of the bone structure allows a

better prevention of the risks of bone fracture.

Indeed, a healthy person owns large and long bone

frameworks which characterize the quality of the

bone structure. At the opposite, the patient af-

fected by bone pathology shows an altered frac-

tured bone structure. Among currently proposed

methods, the bone biopsy remains traumatic and
therefore is rarely practiced.
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The ultimate purpose of the planned work is to

give the means of characterizing the bone texture

from the analysis of CT-scan images. This would

assist the discrimination of healthy from patho-

logical subjects. One of the constraints is to find

methods of analysis independent of the operator.
In that purpose we want to develop reproducible

solutions, inter and intra operator. This paper

emphasizes a preliminary study concerning the se-

lection of some characterization tools of the bone

texture. There are generally three classes of ana-

lysis related to the texture characterization in im-

ages: (i) statistical, (ii) structural and (iii) fractal

analysis.
Statistical parameters account for local prop-

erties of the image. Structural parameters inform

on both the physical limits of the objects framing

the image and the homogeneity of the surface of

these objects. Finally the fractal geometry gives a

measurement of the complexity and the global ir-

regularity of the bone texture.

1.1. Brief overview of texture analysis

A distinction may be made between two appro-

aches for texture analysis: the statistical approach

and the structural one. In statistical approaches,

texture is quantified on the basis of the (local)

spatial distribution of the gray-values parameters

(Benhamou and Lespessailles, 1994; Benhamou
and Harba, 1994; Lynch and Hawkes, 1991; Jin

and Ong, 1995; Pothuaurd and Lespessailles, 1998;

Osman and Newitt, 1998).

In structural techniques, the image is described

in terms of textural elements and their spatial re-

lationships. Most of the texture-analysis algo-

rithms described in literature have been used to

classify quite dissimilar textures. Since the visually
perceived differences in bone texture in radio-

graphs are subtle, the texture-analysis method has

to be rather sensitive. Various statistical methods

of texture analysis were applied in order to trans-

late the differences of bone structure into a set

of information easily exploited. Current research

is focused on morphological texture parameters

and on comparing the usefulness of the different
techniques in distinguishing patients with clinical

osteoporosis from their healthy contemporaries

(Serra, 1982; Cuisenaire, 1999; Vieth, 2000; Muller

and Hahn, 1996).

In the present study, we investigated the value

of bone texture analysis from CT-scans of the

distal radius, obtained with a conventional ma-

chine.
We study here two methods of texture analysis.

The first one is based on the fractal geometry

whose application to the analysis of texture is well

established in literature. After a brief review of

fractal geometry in Section 3, we examine two

methods for the estimation of the fractal dimen-

sion: the method of variations and the method of

morphological covering. We provide details of
their implementation and list the results obtained

from their application on synthetic and real im-

ages. In Section 4, an original method for the

analysis of bone texture, called the ‘‘method of the

three-dimensional relief’’, is presented. It is related

to the structural analysis and is based on the study

of primitives. After a general description of this

method, we present the tools used in the different
processing steps and its implementation on CT-

scan images. We provide details of their imple-

mentation and list the results obtained from their

application on real images. Finally, in Section 5

the conclusion and the prospects are listed.

2. Materials and method

2.1. Materials

CT-scans were undertaken on an Elite Pluse

with a high-resolution algorithm. For each patient,

four consecutive axial and four consecutive coro-

nal slices of the nondominant forearm were se-

lected. The first axial slice was performed just
above the rest of the epiphyseal cartilage and the

first coronal slice was located on the anterior part

of the distal radius (Fig. 1).

To avoid artifacts on coronal slices, there was

an angle of 22� between the main axis of the radius
and the hand. The following CT settings were

used: slice thickness 1 mm; field of view 140 mm;

pixel matrix 512� 512; pixel size �200 lm leading
to a maximum spatial resolution of �400 lm.
Each pixel is coded on 12 bits or 8 bits. The size of
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the region of interest (ROI) was adjusted to the
size of the image (from 8� 8 mm2 to 17.4� 17.4
mm2). The choice of the ROI is carried out ac-

cording to the following criteria:

• Its shape is square.

• Its size is variable (the largest possible to im-

prove the statistical calculation).

• Its position is variable according to the user.
• The ROI must always exclude the cortical bone.

• The ROI is selected by a doctor.

Images were transferred to a PC computer and two

kinds of bone texture analysis were carried out:

fractal analysis and structural analysis. The algo-

rithms used to characterize the bone texture were

all developed in the laboratory of Calais and the
laboratory of Biophysics of the University Hos-

pital of Lille.

2.2. Subjects

Patients were selected in the department of

Rheumatology of the University Hospital of Lille.

Two distinct studies were carried out. Each study
was carried out on groups of 30 women:

In the first study, 30 postmenopausal women

were studied. According to their bone status they

were divided into two groups. Group I consisted of

15 postmenopausal osteoporotic women without

disease affecting bone mass or bone metabolism.

Group II was composed of 15 controls women.

Neither the patients nor the controls were receiv-

ing treatment affecting bone mass or bone meta-
bolism. Eight slices were selected on each patient:

four consecutive coronal slices and four consecu-

tive axial slices. Bone texture analysis was per-

formed using the method of morphological covers

leading to the measurement of two features (Df

and Sf ). The ages of the postmenopausal osteo-
porotic women and controls were not statistically

significantly different: 68� 10 years versus 66� 9
years (p ¼ 0:4). Although both mean weight and
mean height were higher in controls compared

with the osteoporotic women the difference did not

achieve significance: 69� 16 kg versus 65� 14 kg
(p < 0:3) and 161� 7 cm versus 157� 6 cm (p <
0:06), respectively.
In the second one, another group of thirty

women was studied. According to their bone sta-
tus they were divided into three groups. Group I

consisted of 8 postmenopausal women without

disease affecting bone mass or bone metabolism.

Group II consisted of 7 women suffering from

postmenopausal osteoporosis. Group III consisted

of 15 control women before menopausal. Eight

slices were selected on each patient under the same

conditions as the previous groups: four consecu-
tive coronal slices and four consecutive axial slices.

Bone texture analysis was carried out with struc-

tural analysis leading to the measurement of five

features:

• crest length/ROI,

• average size of the large valleys/ROI,

• number of large valleys/ROI,

Fig. 1. Coronal (left) and axial (right) slices.
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• average size of the small valleys/ROI,

• number of small valleys/ROI.

The age of the controls women (group III) before

menopausal is 33.1� 10.6 years and the ages of
postmenopausal osteoporotic women and post-

menopausal women (groups II and I) were statis-

tically significant: 67� 9 years (p < 0:01).
Some comparisons between the bone texture

variables in osteoporotic patients and control pa-

tients were performed by using the nonparametric

Mann–Whitney U-test due to the low number of

patients in each group. A value of p < 0:05 was
considered as statistically significant. The results

are expressed as mean� standard deviation.

3. Fractals

The bone structure is relatively good for fractal

geometry because of its complicated and irregular
character. The fractal analysis is used for the bone

structure analysis because the estimated value of

fractal dimension is real. This fractal dimension

varies with the structure alteration of the trabe-

cular bone and thus with the thinning of the

trabecular network due for example to osteopo-

rosis. The fractal dimension is given by:

Df ¼ � log ðnðeÞÞ
log e

ð1Þ

where NðeÞ represents a size (surface, volume,. . .)
characterizing the object when searching for its

fractal dimension. e represents the resolution with
which the size is calculated. Hausdorff (1919) and
Minkowski (1901) presented the fractal dimension

of the object at the beginning of the 20th century.

3.1. The methods for estimating the fractal dimen-

sion

As seen before, the fractal dimension estimation

lays on the parameter variation characterization,
like the perimeter, the surface or the volume; it

depends on the size of the covering element. There

are a lot of methods for fractal analysis like the

methods of the boxes, the method of variations

and the morphological covering method. For these

methods, the fractal analysis considers the image

as a three-dimensional distribution. Indeed, three

components are taken into account: the location of

the pixel in the image (x; y) and its gray level value
(z). The method of boxes, although easily set up,
has a major drawback which is the error rate of
the fractal dimension. In fact, during the volume

description by a structuring element (an e sized
cube), the occupation rate of this structuring ele-

ment on the curve is not taken into account

(Prasad and Majunbar, 1991).

3.2. Method of variations

This method allows us to determine the fractal

dimension according to Minkowski. In (Vieth,

2000), this method was applied to the estimation of

the fractal dimension of a curve. We achieved an

extension of this method in order to adapt it to the

characterization of our surface. Like Minkowski�s
definition given previously, this method searches

to define the covering case. In our situation the
initial object is a surface, our case will then be a

volume one. This case will be determined from the

maximum variation of the gray-levels, upon a

window (size e), for every surface point. The win-
dow will have to be moved on the whole S surface.
The maximum variations are represented by the

extreme values of the gray-level, in fact the mini-

mum and maximum are located on the same
window. This variation will change according to

the dispersion of the gray-levels. The larger the size

of the structuring element will be, the higher the

range of maximum values of gray levels we get.

3.2.1. Application of the method

Let T be the side value of our square picture I ,
each pixel of this picture will be referenced by its
co-ordinates (i; j). For each of these points, we are
going to determine the maximum and the mini-

mum value of the gray-level upon the neighbour-

hood selected by the window (sized e). We obtain:

Max windeðx; yÞ ¼ max Iði; jÞ
x�e=26 i6 xþe=2

y�e=26 j6 yþe=2

ð2Þ

where the couple (x; y) represents the co-ordinates
of the windows center. In a same way we define:
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Min windeðx; yÞ ¼ min Iði; jÞ
x�e=26 i6 xþe=2

y�e=26 j6 yþe=2

ð3Þ

After obtaining the set of the minimum and

maximum values for our picture, we can calculate

the volume case G V :

G V ðeÞ ¼
X
x

X
y

Max windðx; yÞ

�Min windðx; yÞ ð4Þ

So we calculate the volume cases for different

sizes of the window, these windows are always
applied to the original picture and not in a recur-

sive way. However, the convolution between a T
size square picture and an e size window gives us a
resulting square picture of this size:

T � 2� integerðe=2Þ ð5Þ
The size of the resulting picture depends on our

e window size. For two different windows which

are respectively the sizes e and e0, the resulting
picture will not have the same dimension. This

difference of dimension will generate a graphical

representation of volume cases in function of the e
size, which will be nonlinear. In this process, we

must keep the picture size constant. In this pur-

pose, we arbitrarily decided to stop the calculation
of the volume case for a maximum window size

equal to half the size of the original picture. We

obtain the cases calculated by e ¼ 3 at e ¼ T=2.
The set of values of the volume cases value gives us

the curve:

log G V ðeÞ ¼ f ðlog eÞ ð6Þ
To reach the fractal dimension, we calculate the

linear regression of this curve. We then obtain the

slope, which will be noted:

log G V ðeÞ
log e

� �0
ð7Þ

The fractal dimension is determined as follows:

Df ¼ 3� log G V ðeÞ
log e

� �0
ð8Þ

In this equation, constant 3 is due to the cal-

culation of the fractal dimension by the volume
(topologic dimension equal 3). We define another

parameter, which is the fractal signature. The

fractal signature represents the average of the local

slopes, that is to say the slope between two con-

secutive values e. We have then:

local slope ¼ log V ðeÞ � log V ðe � 2Þ
log e � log ðe � 2Þ ð9Þ

Sign f ¼ 3� averageðlocal slopeÞ ð10Þ

3.3. Method of the morphological covers

Peleg (1984) suggested this method. It consists

in the calculation of the area covering the surface

to be characterized. In order to determine the

covering surface, we must define a lower surface

and an upper surface. Both surfaces make then a

covering of the original surface. gray-level erosion

and dilatation of the original picture respectively

determine the lower and upper surfaces. The dif-
ferences (between the erosion and dilation) are

summed on each pixel. It will give volume V ðeÞ
covering the surface of the picture. Let De and Ee

be the results of the dilatation and erosion of the

central point (i; j) of the window convolution with

e size, we have:

V ðeÞ ¼
X
i

X
j

ðDeði; jÞ � Eeði; jÞÞ ð11Þ

In this volume we�re going to look for a surface. In
order to obtain the covering area of this surface,

we calculate the differential volume dV ðeÞ. We then
obtain:

AðeÞ ¼ dV ðeÞ
de

ð12Þ

Just like with the previous method, the differ-
ential volume dV ðeÞ must be computed on a pic-
ture of constant size. We then obtain the following

expression:

AðeÞ ¼ V ðeaÞ � V ðepÞ
de

; where ea > ep ð13Þ

As the size of the window must be odd, the
variation of e between the two successive windows
will be equal to 2:

AðeÞ ¼ V ðeÞ � V ðe � 2Þ
2

ð14Þ
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We obtain, with if we use the definition of the

fractal dimension given by Minkowski:

Df ¼ 2� log AðeÞ
log e

� �
ð15Þ

Where log AðeÞ= log e½ � represents the slope of

log AðeÞ ¼ f ðlog eÞ

In the same way as the variation method, we

define the fractal signature given by:

Local slope ¼ log AðeÞ � log Aðe � 2Þ
log ðeÞ � log ðe � 2Þ ð16Þ

and Sign f ¼ 2� averageðlocal slopeÞ ð17Þ

Lynch and Hawkes (1991) showed that the best

results are obtained by the use of a vertical or a

horizontal window. After presenting the different

methods of the calculation, we are going to see

their application in the environment of the subject.

3.4. Application on synthetic pictures

To validate the results, we had to generate some

fractal pictures with a known dimension. In order

to generate some fractals, Mandelbrot introduced

the Fractional Brownian Motion (FBM) (Man-

delbrot, 1975). This FBM introduces another pa-

rameter H which is related to the fractal dimension

as follows:

Df ¼ Dt þ 1� H ð18Þ
with Df fractal dimension, and Dt topological di-

mension.

The H variable taking its values in the interval

½0; 1�. From the relation (18) we find a dimension

superior or equal to the topological dimension. We
used the Saupe algorithm (Saupe, 1988). It in-

volves the search of the middle point of the two

points coming from a function, in a recursive way.

This algorithm provides only an approximation of

the FBM. An example of fractal image is shown in

Fig. 2.

By varying the H parameter, we can obtain a set

of synthetic images with fractal dimension in the
interval ½2; 3�. The dimension of the generated

pictures are 2.001, 2.1, 2.2, 2.3, 2.4, 2.5, 2.6, 2.7,

2.8, 2.9 and 2.999, that is to say 11 various di-

mensions.

4. Results and discussion

The method of variations provides estimations

of the fractal dimension between 2.188 and 2.76

(Fig. 3). Consequently, it reduces the expected

range of the fractal dimension (between 2 and 3).

The method of morphological covering pro-

duces a more extensive variation of the fractal

dimension ½2:25; 3:23�. However it delivers sys-

tematically overestimated results (Fig. 4).
If we want to choose between the two previous

method, we have to consider both the method and

the parameters which deliver the best sensitivity.

According to the two previous figures, the

method of morphological covers shows the best

range of variation, for the fractal dimension as

well as for the fractal signature.

We thus proposed to study why we obtained
with the method of the morphological covers some

Fig. 2. Synthetic fractal image with Df ¼ 2:5.
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Fig. 3. Fractal dimension by the method of variation.
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values which were higher than the theoretical di-

mension. We initially directed our study towards
the influence of the number of gray-levels of an

image on fractal dimension.

To carry out this study we used several images

coded with 4 and 8 truncated bits and 12 original

bits, we then plotted the curve log AðeÞ ¼ f ðlog ðeÞÞ
(Fig. 5). We can note that, for the three different

dynamics, the lines are parallel and thus have

identical slopes. Consequently, fractal dimensions
will be equal. We can conclude that the number of

gray levels is not the cause of an over estimate of

the fractal dimension. An explanation could un-

doubtedly be given by multi fractal approach.

4.1. Application on real CT-scan images

To give a brief summary of our work, a priori
and a posteriori, show that the fractal analysis

seems notably effective in terms of discrimina-

tion between osteoporosis women and controls

(Table 1).

For the fractal analysis, the most promising

structure parameters for CT images are fractal

dimension, fractal signature (i.e., with the method

of morphological covers). Indeed, some authors
have shown that the fractal dimension measured

on calcaneus or lumbar spine radiographs was

significantly different in osteoroporotic women

and in age matched controls (Buckland-Wright

and Lynch, 1994; Benhamou and Lespessailles,

1994; Benhamou and Harba, 1994; Cortet and

Dubois, 1998). But others did not note it (Les-

pessilles and Eynard, 1996). The noted differences
could result from the mode of calculation of the

fractal dimension. Indeed, in the work of (Les-

pessilles and Eynard, 1996), the fractal analysis

was carried out by using the estimator of the

maximum of probability according to the model of

the fractional Brownian movement. Whereas in

our study the fractal dimension was determined by

the method of the variation and the morphological
covers.

Nevertheless the results with fractal analysis are

conflicting. (Majunbar and Genant, 1997; Maj-

unbar and Link, 1999; Cortet et al., 2000) showed

on MRI images that the fractal dimension was not

statistically different in osteoroporotic patients and

in controls after adjustment for age. However, we

cannot exclude the possibility that the use of an-
other method to calculate the fractal dimension

could provide better results in terms of discrimi-

nation between osteroporotic and controls in MRI

images.

This is why we studied and developed another

approach. We will present a method based on the
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Fig. 4. Fractal dimension by morphological covering.
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Table 1

Bone texture fractal analysis between group I and group II on

axial slices

Variables Group I Group II p

Number 15 15

Age 68� 10 66� 9 0.4

Years since

menopause

19� 11 19� 11 Not significant

Weight (kg) 65� 14 69� 16 Not significant

Height (cm) 157� 61 61� 7 0.06

Sign_f 2.8� 0.17 2.69� 0.13 0.017

Df 2.91� 0.15 2.72� 0.15 0.02
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approach of the structural analysis of texture: the

three-dimensional relief method.

5. Three dimensional relief

As seen below, this method uses a structural

analysis of the texture. The structural analysis

gives a description of textures by studying the

primitives that compose them. There are two

methods to study these primitives. The first one is

based on a description of the layout and the or-

ganization of the primitives. It is often used for

strongly structured textures. In our case, our im-
ages relate to natural textures and are not there-

fore matched to this method. The second method

is the three-dimensional relief. It is a description of

the primitives and runs in two steps: the extraction

of the primitives uses classical segmentation tech-

niques such as thresholding or edge detection. A

binarization is then made so as to characterize the

obtained shapes more easily.

5.1. Description of the method

The image is considered as a relief being con-

stituted by gray-level valleys and crests. On CT-

scan images, the bone frameworks correspond to

the clearest areas (highest gray-levels), the soft

tissues of the trabecular bone correspond to the
darkest areas. We will then get a mountainous

relief where major values of gray-levels represent

the highest altitudes, and low gray-levels will have

the lowest altitudes. The aim of this method is to

characterize the components of this relief, that it

to say the crests and the valleys. This character-

ization is made by the means of a gray-level

skeletonizing (Serra, 1982; Taleb-Ahmed et al.,
2000). This skeletonizing outlines the valleys by

the crests corresponding to the bone frameworks.

Each valley gets a unique altitude and is therefore

changed into a flat basin. The sides of each

mountain form this basin and we associate the

value of gray-level of the lowest point of the

valley to the basin (Fig. 6). This lowest point can

be compared with the running point of the rain-
water into a valley.

Crests formed by the tops of the «mountains»
then delimit each basin. These crests form the

watershed.

5.2. Implementation

As mentioned above, the first step of the
method involves the extraction of the primitives

with the help of a gray-level skeletonizing.

5.2.1. Gray-level skeletonizing

The skeletonizing is obtained after calculating

successively two kinds of filters (Taleb-Ahmed

et al., 2000). Thanks to this method, we obtain

maxima gray-level that remains unchanged and
that form the crests of the three-dimensional image.

The flanks get the minimal value of the valley. The

convolution of an image by a filter produces a

consequent image smaller than the initial image.

Considering the very large number of convolu-

tions, we have to keep the image size constant. To

achieve this result, we replicated the edges of the

resultant image, so as to adjust the size of the
image after each convolution. We checked that

this operation had no or little impact on the final

result. A trimming of the skeleton follows the

skeletonizing.

5.2.2. Trimming of the skeleton

The trimming consists of the successive running

of filters (Taleb-Ahmed et al., 2000) to suppress

the artifacts induced by the skeletonizing. We can

make two kinds (coarse and fine) of trimming. We

then get the skeleton as illustrated by the Fig. 7

left.

Fig. 6. ROI in coronal slice (left) and 3D ROI in coronal

(right).
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So, to extract the crests, we make the difference

between the trimmed skeleton and the opened

skeleton. The result is then binarized and gives a

characterization of the shapes, as shown on the

Fig. 7 right. We define from this binary image a

characteristic attribute: the total crest length

measured by the number of white pixels referred to

the surface of the RIO.

5.2.3. Contour extraction

Then by inverting the binary image, we char-

acterize the average valley surface by computing

the number of the valleys constituting the image.

Some errors in digitizing or processing the images

can induce the generation of small illicit valleys,

making then the number of the small valleys
poorly representative. This is why we define an

arbitrary threshold of surface rejection of these

valleys. We obtain then two values: the average

size of the small valleys and the average size of the

large valleys, both referring to the surface of the

ROI.

5.3. Evaluation and discussion

The tuning of this method was investigated in
two ways: the determination of the thresholds for

the rejection of the small valleys and the influence

of the gray-level coding of the original dynamics.

5.3.1. Influence of the small valleys

So to eliminate the meaningless valleys, we

search for an optimal rejection threshold of small

valleys. The histogram of the valley sizes (Fig. 8)
was computed for patients belonging to different

groups: control patients (patient no. 1), bone pa-

thologies (patients no. 2 and 3).

As we can see it, this histogram outlines a large

recovering of the values and does not allow to

select a rejection threshold. Consequently, we fi-

nally chose an arbitrary threshold of 4 pixels.

5.3.2. Influence of the gray-level coding

We studied a same image with different coding

of the dynamics: 12 original bits and truncated 4

and 8 bits. The display (Figs. 9–11) of the obtained

results with the same trimming process shows

major differences.

The most appropriate dynamics to our study is

the one which gave us the best discrimination and
therefore offered the widest range of variation of

Fig. 8. Histogram of the valley sizes.

Fig. 7. Result of thinning after trimming and shaping of the

crest line (right).
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the computed parameters. We therefore calculated
the previously defined parameters from the dif-

ferent dynamics for controls patients (15 healthy

women beforemenopause) and patients aftermeno-

pausal (7 menopausal women and 8 menopausal

osteoporotic women). The results are given in

Table 2.

We can observe that, whatever the dynamics

used, the five features calculated have not the same

discrimination power. Actually, the ranges of

variations are more important for the parameters

crest length and the average size of the large val-

leys.

Moreover, these two parameters seem to be the

most significant ones for characterizing the trabe-
cular bone, as bone frameworks are represented by

the crests and the space between bone frameworks

is represented by the large valleys. In addition, the

table reveals that the range of variation of these

five features decreases with the increase of the

gray-levels dynamics.

This remark is all the more true for the two

previously quoted parameters. Indeed, for the
parameter of the crest length, we obtain values

ranging in the interval ½30:96; 39:04� with the 4 bits
coded dynamics and in the interval ½48:98; 49:19�
with the 12 bits dynamics. In the same way, for the

average size of the large valleys we get a range of

value ½43:64; 61:76� with the 4 bits coded dynamics
and ½25:62; 27:18� with the 12 bits coded dynamics.
From these results, we notice that the discrimina-
tion will be better if we use a 4 bits coded dynamics

because of these larger ranges.

In this preliminary study, though limited to 30

patients, we have seen that by using a weak dy-

namics of gray-level, we obtained a more impor-

tant range of the measured parameters. This is why

we finally opted for a dynamics restricted to 4 bits

coding. Furthermore, the average size and the
total number of small valleys will not allow a

good discrimination, considering their little range

of variations. In these circumstances, we can sup-

press the parameters exclusively calculated from

small valleys. Nevertheless, this study is a prelim-

inary one and the population under testing is to

increase, we will preserve some information on the

small valleys so as to check their influence. Then
we define a parameter gathering the small and the

large valleys: the average size of all valleys. Con-

sequently, the retained attributes are: the crest

length, the number of valleys (both referred to the

size of the ROI), the average size of the large

valleys and the average size of all the valleys.

We also noted that the results obtained in terms

of discrimination between the two groups (II and
III) are better on coronal than on axial slices. In

fact, for the parameter of the crest length, we ob-

Fig. 9. Results of the thinning and of the crest line from a 4 bits

coded dynamics.

Fig. 10. Results of the thinning and of the crest line from a 8

bits coded dynamics.

Fig. 11. Results of the thinning and of the crest line from a 12

bits coded dynamics.
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tained values ranging in the interval ½34:56; 36:14�
with the 4 bits coded dynamics and in the interval

½49:08; 49:23� with the 12 bits dynamics. In the

same way, for the average size of the large valleys

we get a range of value ½55:24; 62:06� with the 4 bits
coded dynamics and ½26:34; 27:91� with the 12 bits
coded dynamics We think that this finding might

be due to the anisotropy of the radius, which is

possibly more pronounced in osteoporotic patients
than in controls.

6. Conclusion

We developed original methods for the analysis

and the characterization of the bone texture. These

methods are based on the numerical processing of
CT-scan images. Our results suggest that bone

texture analysis might be a useful tool in the as-

sessment of osteoporosis. However, not all the

methods presented and all the features measured

were equally useful in terms of discriminating be-

tween osteoporotic women and controls.

In summary, firstly, results of our work, a priori
and a posteriori, show that fractal analysis seems

effective notably in terms of discrimination be-

tween osteoporosis women and controls.

The most promising structure parameters for

CT images are fractal dimension, fractal signature,

for fractal analysis (i.e., by using the method of

morphological covers).

Secondly, the most promising structure pa-
rameters for CT images are the crest length, the

number of valleys (both referred to the size of the

ROI), the average size of the large valleys and

the average size of all valleys, for the structural

approach. We have seen that by using a weak

dynamics of gray-level, we obtained a more im-

portant range of the measured parameters (i.e., for

a dynamics restricted to 4 bits coding). In the fu-
ture, we must verify and take into account the

reproducibility of the features used for the char-

acterizing of bone texture.

In conclusion, this preliminary study advocates

interest in CT-scan analysis of the distal radius in

detecting osteoporosis related changes in trabecular

Table 2

Values (mean� standard deviation) of the computed parameters from coronal slices

Control patients

(n ¼ 15)

Menopausal women

(n ¼ 7)

Menopausal osteoporotic

women (n ¼ 8)

Crest length/ROI size (in %)

4 bits dynamics 39.04± 1.5 (p < 0:03) 35.3± 2.5 (p < 0:03) 30.96± 2.0 (p < 0:03)

8 bits dynamics 44.5� 2.05 38.59� 4.8 41.88� 1.55
12 bits dynamics 49.19� 3.8 46.48� 3.5 48.98� 2.85

Average size of the large valleys/ROI

4 bits dynamics 43.64± 3.05 (p < 0:03) 57.53± 1.95 (p < 0:03) 61.76± 2.25 (p < 0:03)

8 bits dynamics 32.22� 5.05 38.67� 4.65 35.2� 3.75
12 bits dynamics 25.62� 2.15 25.61� 3.5 27.18� 3.35

Number of large valleys/ROI size (in %)

4 bits dynamics 1.39± 0.5 (p < 0:04) 1.12± 0.1 (p < 0:04) 1.12± 0.17 (p < 0:04)

8 bits dynamics 1.69� 0.2 1.58� 0.8 1.64� 0.6
12 bits dynamics 1.92� 0.25 2.04� 0.55 1.84� 0.35

Average size of the small valleys/ROI

4 bits dynamics 1.83� 0.13 (p < 0:05) 3� 0.11 (p < 0:05) 0

8 bits dynamics 2.33� 0.35 1.2� 0.25 2� 0.17
12 bits dynamics 2.13� 0.3 1.82� 0.5 2.14� 0.13

Number of small valleys/ROI size (in %)

4 bits dynamics 0.2� 0.01 (p < 0:05) 0.13� 0.02 (p < 0:05) 0

8 bits dynamics 0.5� 0.1 0.33� 0.89 0.13� 0.012
12 bits dynamics 0.79� 0.025 0.72� 0.05 0.46� 0.03
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bone texture. These changes are in harmony with

those found in histo-morphometric studies (Crou-

cher and Compston, 1996).
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